Sur l'inégalité de Turán-Kubilius friable
نویسندگان
چکیده
An integer n is said to be y-friable if its largest prime factor P (n) does not exceed y. By convention, P (1) := 1. Classical notations are S(x, y) := {n x : P (n) y} for the set of y-friable integers not exceeding x and Ψ(x, y) for its cardinality. The study of friable restrictions of arithmetic functions is closely connected to the Kubilius model of probabilistic number theory. In this framework, a variance analysis constitutes an essential feature of the probabilistic description of an arithmetic function f as a random variable over S(x, y). The case of additive functions is particularly interesting: by comparing, uniformly in f , the semiempirical variance Vf (x, y) := 1 Ψ(x, y) ∑ n∈S(x,y) ∣∣∣f(n)− E(Zf,x,y) ∣∣∣2 (1 y x), to the actual variance V(Zf,x,y) of a probabilistic model Zf,x,y, we get a quantitative measure of the discrepancy between probabilistic number theory and probability theory. In this direction, La Bretèche and Tenenbaum recently showed that, for any given c > 0, C(x, y) := sup f additive Vf (x, y)/V(Zf,x,y), is finite and uniformly bounded in the domain c log x y x, thus extending the classical TuránKubilius inequality, which corresponds to the case x = y. Moreover, they also prove, in accord with Kubilius’ model, that C(x, y) = 1 + o(1) whenever (log y)/ log x + (log x)/y → 0. We determine the exact value of C(u) := limx→∞ C(x, x1/u) for all u 1 and provide an asymptotic formula for this quantity as u → ∞. Refining a method due to Hildebrand, we develop a new approach, resting upon the theory of self-adjoint operators in Hilbert spaces. Sommaire
منابع مشابه
Inégalité de Turán-Kubilius friable et indépendance asymptotique
Elaborating on previous works and taking advantage of estimates on the local behaviour of the counting function of friable integers, we determine the optimal range in which the friable Turán-Kubilius constant tends to 1.
متن کاملConstantes de Turán-Kubilius friables: une étude numérique
method, saddle-point method. This study is a follow-up to two recent works: [la Bretèche et Tenenbaum 05] and [Martin et Tenenbaum 08]. The former provides a friable (i.e., with respect to integers free of large prime factors) extension of the classical Turán–Kubilius inequality, while the latter furnishes a theoretical method for sharp evaluation of the involved constants. Here, we complement ...
متن کاملRubrique secondaire: Analyse Harmonique / Harmonic Analysis Titre français: Un raffinement du théorème de Erdős-Turán sur la distribution des zéros de polynômes AN IMPROVEMENT OF THE ERDŐS–TURÁN THEOREM ON THE DISTRIBUTION OF ZEROS OF POLYNOMIALS
We prove a subtle “one-sided” improvement of a classical result of P. Erdős and P. Turán on the distribution of zeros of polynomials. The proof of this improvement is quite short and rather elementary. Nevertheless it allows us to obtain a beautiful recent result of V. Totik and P. Varjú as a simple corollary, and in a somewhat stronger form, without any use of a potential theoretic machinery. ...
متن کاملElitism and stochastic dominance
Élitisme et Dominance Stochastique Résumé La dominance stochastique est traditionnellement associée à la mesure du risque et de l'inégalité et repose sur la concavité de la fonction d'utilité. Nous prétendons que l'approche en terme de dominance stochastique a des implications qui vont au-delà de la mesure du risque et de l'inégalité pour peu que l'on procède à certains ajustements. Nous appliq...
متن کاملDensité des friables
Résumé : Nous étudions l’asymptotique des fonctions sommatoires restreintes aux entiers friables de suites complexes en utilisant la méthode du cercle et des estimations précises sur les sommes d’exponentielles sur les friables. Les méthodes développées nous permettent d’obtenir une estimation du cardinal des couples de y-friables dont la somme est encore y-friable et, sous des hypothèses usuel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. London Math. Society
دوره 93 شماره
صفحات -
تاریخ انتشار 2016